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Abstract
A theoretical model is suggested which describes the generation and evolution
of misfit dislocations in composite solids containing nanowires with rectangular
cross-section. In the framework of the model, the ranges of the geometric
parameters (nanowire sizes, misfit parameter, interspacing between the
nanowire and the free surface of the composite) are calculated at which the
generation of various misfit dislocation configurations (loops, semi-loops and
dipoles) is energetically favourable. Transformations of these dislocation
configurations and their specific features are discussed.

1. Introduction

Composite solids exhibiting functional physical and mechanical properties serve as key
materials in diverse contemporary high technologies. Recently, much attention has been
attracted to nanocomposites which contain more than one solid phase and where at least
one of the phases has dimensions less than 100 nanometres; see, e.g. [1–16]. In particular, of
special interest for electronic and optoelectronic applications are nanocomposites containing
nanowires (second-phase inclusions of wire form and cross-section having dimensions in
the nanometre range) embedded into a matrix [1–11]. In addition to technologically
motivated attention to nanowires, their examination is highly interesting for understanding
the fundamental nature of nanoscale effects in condensed matter.

In general, the stability of both structure and properties of composite solids, which is
crucial for applications of such solids, is strongly influenced by generation and evolution of
misfit dislocations. Misfit dislocations are generated as defects that, in part, accommodate
misfit stresses occurring due to a misfit (geometric mismatch) between adjacent crystalline
lattices of different phases of a composite. Generation and evolution of misfit dislocations are
crucially affected by geometric parameters of constituent phases of composites. The effect
of the geometric parameters on behaviour of misfit dislocations is the subject of intensive
experimental and theoretical studies which commonly deal with plate-like, continuous and
island films deposited onto substrates, e.g., [17–36]. However, with the rapidly growing
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Figure 1. Misfit defect configurations in a composite containing a nanowire: (a) dislocation loop;
(b) dislocation semi-loop, and (c) dislocation dipole.

attention to composites containing nanowires, it is highly interesting to analyse the behaviour
of misfit dislocations in such composites. The aim of this paper is to elaborate a theoretical
model which describes the influence of geometric parameters (misfit parameter,nanowire sizes,
distance between nanowire and free surface) on the formation of various misfit dislocation
configurations in composites containing nanowires with rectangular cross-sections.

2. Nanowire with a rectangular section in a composite

Let us consider a nanowire (a second-phase tube) having a rectangular cross-section and infinite
length, embedded into a semi-infinite matrix (figure 1). The nanowire and matrix are assumed
to be elastically isotropic solids with the same values of the shear modulus G and the same
Poisson ratio ν. The nanowire is parallel to the matrix free surface, given by x3 = 0, and is
bounded by flat faces given by equations x2 = ±a and x3 = d ± c. The interphase boundary
between the matrix and the nanowire is characterized by a two-dimensional dilatation misfit
f = 2(am − ai)/(am + ai), where am and ai are the crystal lattice parameters of crystal lattices
of the matrix and the inclusion, respectively. Owing to the misfit f , elastic strains and stresses
exist in both the inclusion and the matrix, which cause coherent matching of their adjacent
crystal lattices. In general, these misfit stresses can be relaxed via the generation of various
defect configurations, such as isolated misfit dislocations, misfit dislocation dipoles, prismatic
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dislocation loops and semi-loops. Similar to misfit defects in conventional continuous films
and film islands (see, e.g., [17–36]), the formation of misfit defect configurations in nanowires
is energetically favourable in certain ranges of parameters of the composite system under
consideration.

First, let us consider conditions at which the formation of a prismatic dislocation loop at
the interphase boundary between the nanowire and the matrix is energetically favourable. Such
a loop can result from either preliminary generation of dislocation semi-loops at the matrix
free surface or coagulation of point defects (interstitials or vacancies). Let the prismatic
dislocation loop be located in the plane x1 = 0 and bounded by the segments x2 = ±a
and x3 = d ± c (figure 1(a)). It is characterized by the Burgers vector b = −be1. The
formation of the prismatic dislocation loop is energetically favourable if the difference �W
in the energy between the dislocated state and the dislocation-free state of the composite is
negative (�W < 0) [18]. The characteristic energy difference can be written as follows:

�W = W l + W l− f + W c. (1)

Here W l denotes the proper strain energy of the dislocation loop, W l− f the energy that
characterizes the elastic interaction between the dislocation and the misfit stresses, and W c the
dislocation core energy.

3. Energy of a prismatic dislocation loop located near a free surface

In order to calculate the proper strain energy Wl of a prismatic dislocation loop, first, it
is necessary to calculate its stress field in the region surrounded by the loop. To date, the
elastic fields have been calculated for dislocation loops having the form of a circle [37–50],
rectangle [51–54] and ellipse [55–57] in isotropic [37–43, 51, 52] and anisotropic [56, 57]
infinite media as well as in isotropic semi-infinite solids [38, 44, 45], two-phase composite
materials [46–48], isotropic [49] and anisotropic [50] plates in the case of loops located in
planes parallel to a free surface or an interphase boundary. At the same time, the authors
are unaware of similar solutions for prismatic loops whose planes are perpendicular to a free
surface.

Elastic fields of the loop under consideration (figure 1), which is located in the plane
perpendicular to the matrix free surface, will be calculated below with the help of the Green
functions for semi-infinite solids [58, 59]. (Generally speaking, displacements created by the
dislocation loop can be calculated using the general formulas [60–63] for displacement fields
of infinitesimal dislocation loops in semi-infinite isotropic solids. However, the use of the
Green functions is more effective, because the displacement fields [60–63] are not expressed
in the direct way.)

The displacement field ui created by a prismatic dislocation loop can be written as
follows [59]:

ui (x) =
∫

�

C jlmnβ
∗
nm(x′)

∂

∂x ′
l

Gi j(x,x′) dx′, (2)

where x = (x1, x2, x3) and x′ = (x ′
1, x ′

2, x ′
3) are three-dimensional vectors,dx′ = dx ′

1 dx ′
2 dx ′

3,
� is the half-space x3 � 0, β∗

nm(x′) is the plastic distortion created by the dislocation loop,
C jlmn denotes the tensor of elastic moduli, and Gi j(x,x′) is the Green function for a half-
space. In formula (2) and below, summation is performed over repeated indexes. In the case
of isotropic solids, the tensor C jlmn reads [59]:

C jlmn = λδ jlδmn + G(δ jnδlm + δ jmδln), (3)

where λ = 2νG/(1 − 2ν), and δmn is the Kronecker symbol.
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The plastic distortion β∗
nm created by the dislocation loop (figure 1(a)) is as follows:

β∗
nm(x′) = bδ(x ′

1)H (a − |x ′
2|)H (c − |x ′

3 − d|)δn1δm1. (4)

Here δ(t) is the delta-function, and H (t) is the Heaviside function (H (t) = 1, if t > 0, and 0,
if t < 0).

Formulas for the Green functions Gkl are given (in units of 1/[16πG(1 − ν)]) by [59]:

Gi j(x,x′) = G ji(x,x′) =
{

3 − 4ν

R1
+

4(1 − ν)(1 − 2ν)

R2 + x3 + x ′
3

+
R2

2 + 2x3x ′
3

R3
2

}
δi j

+ (xi − x ′
i)(x j − x ′

j)

{
1

R3
1

− 4(1 − ν)(1 − 2ν)

R2(R2 + x3 + x ′
3)

2
+

(3 − 4ν)R2
2 − 6x3x ′

3

R5
2

}
, (5)

G3 j (x,x′) = (x j − x ′
j)

{
(x3 − x ′

3)

[
1

R3
1

+
3 − 4ν

R3
2

]
+

4(1 − ν)(1 − 2ν)

R2(R2 + x3 + x ′
3)

− 6x3x ′
3(x3 + x ′

3)

R5
2

}
,

(6)

Gi3(x,x′) = (xi − x ′
i )

{
(x3 − x ′

3)

[
1

R3
1

+
3 − 4ν

R3
2

]
− 4(1 − ν)(1 − 2ν)

R2(R2 + x3 + x ′
3)

+
6x3x ′

3(x3 + x ′
3)

R5
2

}
,

(7)

G33(x,x′) = 3 − 4ν

R1
+

(x3 − x ′
3)

2

R3
1

+
8(1 − ν)2 − (3 − 4ν)

R2

+
(3 − 4ν)(x3 + x ′

3)
2 − 2x3x ′

3

R3
2

+
6x3x ′

3(x3 + x ′
3)

2

R5
2

, (8)

where i, j = 1, 2, and R2
1,2 = (x1 − x ′

1)
2 + (x2 − x ′

2)
2 + (x3 ∓ x ′

3)
2.

With (3) and (4) substituted to (2), we have:

ui (x) = 2Gb

1 − 2ν

∫ d+c

d−c
dx ′

3

∫ a

−a
dx ′

2

{
(1 − ν)

∂Gi1

∂x ′
1

+ ν

(
∂Gi2

∂x ′
2

+
∂Gi3

∂x ′
3

)}∣∣∣∣
x′

1=0
. (9)

The elastic distortion β j i created by the dislocation loop is in the following relationship
with the displacement vector ui :

β j i(x) = ∂ui (x)

∂x j
− β∗

j i(x). (10)

The stress field σ l
i j of the dislocation loop is given by [59]:

σ l
i j (x) = Ci jklβlk(x). (11)

The elastic energy of the dislocation loop is calculated using formula [39, 59]:

W l = −b

2

∫ d+c−r0

d−c+r0

dx3

∫ a−r0

−a+r0

dx2 σ l
11(x1 = 0) (12)

with r0 being the dislocation core radius.
With (3) and (9)–(11) substituted to (12) and conditions G12 = G21, ∂Gkl

∂x′
1

= − ∂Gkl
∂x1

,
∂Gkl
∂x′

2
= − ∂Gkl

∂x2
, (k, l = 1, 2, 3), ∂G13

∂x′
3

= − ∂G31
∂x3

and ∂G23
∂x′

3
= − ∂G32

∂x3
taken into account, we obtain

the following expression for the energy W l :

W l = − 2G2b2

(1 − 2ν)2

∫ d+c−r0

d−c+r0

dx3

∫ a−r0

−a+r0

dx2

{∫ d+c

d−c
dx ′

3

∫ a

−a
dx ′

2

[
(1 − ν)2 ∂2G11

∂x1∂x ′
1

+ 2ν(1 − ν)

(
∂2G21

∂x2∂x ′
1

+
∂2G31

∂x3∂x ′
1

)
+ ν2

(
∂2G22

∂x2∂x ′
2

+ 2
∂2G32

∂x3∂x ′
2

+
∂2G33

∂x3∂x ′
3

)]∣∣∣∣
x′

1=0

− (1 − ν)(1 − 2ν)

2
δ(x1)

}∣∣∣∣
x1=0

. (13)



Misfit dislocations in composites with nanowires 3543

After integration in formula (13) under the condition (d, c) � r0/2, we have W l = (Db2/2)L1,
where D = G/[2π(1 − ν)] and the effective length L1 = L1(a, c, d, ν, r0) reads

L1(a, c, d, ν, r0) = S1 + 2S2 + S3 + [3 − 4ν(3 − 2ν)]S4 + 2
1 − 2ν(6 − 11ν + 8ν3)

(1 − 2ν)2
S5

− 129 − 2ν{234 − ν[245 − 4ν(5 + 16ν)]}
3(1 − 2ν)2

S6, (14)

with

S1 = a

(
2 ln

K3 + a

K3 − a
− ln

√
a2 + (d − c + r0/2)2 + a√
a2 + (d − c + r0/2)2 − a

− ln
K2 + a

K2 − a

)
, (15)

S2 = 2a ln
4a

r0
+ 2c ln

4c

r0
− a ln

K4 + a

K4 − a
− c ln

K4 + c

K4 − c
− 4(a + c − K4), (16)

S3 = 8(1 − ν)(1 − 2ν)c2d

a2
+

3c2

d
− 2c2(a2 + d2)K3

a2d2
, (17)

S4 = 2d2 K3 − (d − c)2 K1 − (d + c)2 K2

2a2
, (18)

S5 = d ln
d + K3

d
− (d − c) ln

d − c + K1

d − c
− (d + c) ln

d + c + K2

d + c
, (19)

S6 = 2K3 − K1 − K2, (20)

and K 2
1,2 = a2 + (d ∓ c)2, K 2

3 = a2 + d2, K 2
4 = a2 + c2.

In the limit d → ∞, the expression for the energy W l transforms into that for the energy
W l∞ of a prismatic dislocation loop in an infinite medium:

W l
∞ = 2Db2

{
a ln

4a

r0
+ c ln

4c

r0
− a

2
ln

K4 + a

K4 − a
− c

2
ln

K4 + c

K4 − c
− 2(a + c − K4)

}
. (21)

For a square loop, at 2a = 2c = l (l is the length of a segment), expression (21) yields
the energy density W l∞/(4l) ≈ Db2/2 (ln l/r0 − 0.78) per unit loop length, which is in
good agreement with similar results for a prismatic loop of hexagonal shape (≈Db2/2 (ln l/r0 +
0.16) and ≈Db2/2 (ln l/r0 − 0.14), where l is the length of a segment of a hexagonal loop),
discussed in [64].

In the limit a → ∞, the elastic energy of the dislocation loop, divided by 2a, transforms
into the elastic energy (per unit length) w

dip
‖ of a dipole of edge dislocations which are parallel

to the matrix free surface:

w
dip
‖ = lim

a→∞
W l

2a
= Db2

2

(
ln

d − c + r0/2

r0/2
+ ln

d + c

r0/2
− 2 ln

d

c
− c2

d2

)
. (22)

For c → ∞, the elastic energy of the dislocation loop (divided by 2c) is equal to the
elastic energy w

dip
⊥ of a dipole of edge dislocations (per their unit length) whose lines are

perpendicular to the free surface:

w
dip
⊥ = lim

c→∞
W l

2c
= Db2

2
ln

2a

r0
. (23)

This formula coincides with that for elastic energy of a similar dislocation dipole in an infinite
medium [64]. Finally, the elastic energy W sl of a 
-like dislocation semi-loop can be found
from formulas (14)–(20) in the limit of d → c: W sl = limd→c W l .

We can also give here a useful first-order approximation to the energy W segm
lat , related

to the formation of a lateral segment perpendicular to the free surface. It is defined as the
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Figure 2. Dependence of the proper energy Wl (in units of Db3/[4(a +c)]) of the misfit dislocation
loop on the dimensionless interspacing d/b between its centre line and the matrix free surface, for
ν = 0.3, r0 = b, c/b = 10 and a/b = 5, 10, 20, 40 and ∞ (curves 1, 2, 3, 4 and 5, respectively).
Dashed lines correspond to values of Wl

max and Wl (∞) for curve 3.

half-difference of the elastic energy W sl of the dislocation semi-loop and the elastic energy of
its straight segment of length 2a, parallel to the free surface, at a → ∞:

W segm
lat = 1

2 lim
a→∞[W sl − 2aw

dip
‖ (d = c)]

= Db2c

4

(
ln

4c

r0
+

[1 − 2ν(6 − 11ν + 8ν3)] ln 2

(1 − 2ν)2
− 1

4

)
. (24)

The total energy related to the formation of a lateral segment is a combination of its elastic
energy W segm

lat and the energy Db2c of its core.
Dependences of the energy W l on the interspacing d between the centre of the dislocation

loop and the matrix free surface are shown in figure 2, for c = 10b, r0 = b, ν = 0.3 and
different values of a. As follows from figure 2, the energy Wl decreases with rising d at low
values of a/c (for example, see curve 1 with a = c/2). When the ratio a/c increases, the
dependence Wl(d) exhibits a maximum W l = W l

max at some d (see curve 2 with a = c).
At high values of a/c, the height Wl

max − W l∞, where W l∞ = W l (d → ∞), of the maximum
decreases (see curves 3 and 4 with a = 2c and 4c, respectively) and approaches zero in the
limit of a → ∞ (see curve 5).

4. Interaction of a dislocation loop with misfit stress field

The energy W l− f that characterizes interaction of the dislocation loop (figure 1(a)) with the
misfit stress field is calculated using the formula [39]:

W l− f = −b
∫ d+c

d−c
dx3

∫ a

−a
dx2 σ

f
11(x1 = 0). (25)

Here σ
f

11 is the component of the stress tensor of the second-phase nanowire.
The stressesσ

f
kl are calculated using the expressions for the stresses created by a rectangular

inclusion in a plate of finite thickness [65]. In units of 2D(1 + ν) f , they are as follows:

σ
f

11 = σ
f

22 + σ
f

33, (26)
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σ
f

22 = arctan
a − x2

d + c − x3
+ arctan

a + x2

d + c − x3
− arctan

a − x2

d − c − x3
− arctan

a + x2

d − c − x3

− 3 arccotan
(d − c + x3)

2 + x2
2 − a2

2a(d − c + x3)
+ 3 arccotan

(d + c + x3)
2 + x2

2 − a2

2a(d + c + x3)

+
4ax3[(d − c + x3)

2 − x2
2 + a2]

[(d − c + x3)2 + (a − x2)2] [(d − c + x3)2 + (a + x2)2]

− 4ax3[(d + c + x3)
2 − x2

2 + a2]

[(d + c + x3)2 + (a − x2)2] [(d + c + x3)2 + (a + x2)2]
, (27)

σ
f

33 = arctan
d + c − x3

a − x2
+ arctan

d + c − x3

a + x2
− arctan

d − c − x3

a − x2
− arctan

d − c − x3

a + x2

− arccotan
(d − c + x3)

2 + x2
2 − a2

2a(d − c + x3)
+ arccotan

(d + c + x3)
2 + x2

2 − a2

2a(d + c + x3)

− 4ax3 [(d − c + x3)
2 − x2

2 + a2]

[(d − c + x3)2 + (a − x2)2] [(d − c + x3)2 + (a + x2)2]

+
4ax3 [(d + c + x3)

2 − x2
2 + a2]

[(d + c + x3)2 + (a − x2)2] [(d + c + x3)2 + (a + x2)2]
, (28)

σ
f

12 = σ
f

13 = 0, (29)

σ
f

23 = 1

2
ln

[(d + c − x3)
2 + (a + x2)

2] [(d − c − x3)
2 + (a − x2)

2]

[(d + c − x3)2 + (a − x2)2] [(d − c − x3)2 + (a + x2)2]

+
1

2
ln

[(d − c + x3)
2 + (a + x2)

2] [(d + c + x3)
2 + (a − x2)

2]

[(d − c + x3)2 + (a − x2)2] [(d + c + x3)2 + (a + x2)2]

− 8ax2x3 (d − c + x3)

[(d − c + x3)2 + (a − x2)2] [(d − c + x3)2 + (a + x2)2]

+
8ax2x3 (d + c + x3)

[(d + c + x3)2 + (a − x2)2] [(d + c + x3)2 + (a + x2)2]
. (30)

Substituting (26)–(28) into (25), one obtains Wl− f = −(Db2/2) f L2, where the effective
length L2 = L2(a, c, d) is given for d > c by

L2(a, c, d) = 128(1 + ν)
a

b

{
πc

4
+ 2d arctan

d

a
− (d − c) arctan

d − c

a
− (d + c) arctan

d + c

a

+
d2

2a
ln

d2 − c2

d2
+

d2 − a2

2a
ln

K 2
3

K1 K2
+

dc

a
ln

(d + c)K1

(d − c)K2
− c2

2a
ln

K1 K2

d2 − c2

}
.

(31)

5. Critical condition of the energetically favourable formation of a misfit dislocation
loop

The formation of a dislocation loop is energetically favourable, if �W < 0. With formula (1)
and equations W l = (Db2/2)L1, W l− f = −(Db2/2) f L2 and W c ≈ (Db2/2)L (the energy
W c of dislocation loop core is given by this standard approximation [64], where L = 4(a + c)
is the sum length of dislocation segments composing the loop), the inequality �W < 0 is
equivalent to the condition f > f l

c with

f l
c = L + L1

L2
, (32)

where L1 is determined by equations (14)–(20) and L2 is given by equation (31).
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In doing so, f l
c plays the role of the critical misfit parameter. When the misfit parameter

f that characterizes the nanowire material exceeds f l
c , the formation of such a prismatic

dislocation loop (figure 1(a)) is energetically favourable.

6. Misfit dislocation semi-loops in composites with nanowires

Besides the formation of prismatic dislocation loops surrounding a nanowire, alternative
mechanisms can come into play, also causing a partial relaxation of misfit stresses. These
mechanisms are related to the formation of either misfit dislocation semi-loops (figure 1(b))
or misfit dislocation dipoles (figure 1(c)).

In this section, we consider energetic characteristics of 
-like semi-loops of misfit
dislocations (figure 1(b)). In the case of a wide nanowire located in the vicinity of the matrix free
surface, the total length of such a semi-loop (and, as a corollary, the energy of its core) is small
compared to that of a dislocation loop surrounding the nanowire. Therefore, the formation
of misfit dislocation semi-loops can be more energetically favourable than the generation of
closed dislocation loops. Also, the critical misfit parameter f sl

c for the formation of semi-loops
may be smaller than the critical misfit parameter f l

c for the generation of dislocation loops
( f sl

c < f l
c ). In doing so, the critical misfit parameter f sl

c is defined as follows: if f > f sl
c , the

formation of an individual misfit dislocation semi-loop is energetically favourable.
The critical misfit parameter f sl

c is calculated in the same way as f l
c (see above). So, we

have calculated dependences of f l
c and f sl

c on the distance h between the nanowire and the
matrix free surface (h = d − c). These dependences are presented in figure 3 for different
values of a in the case of c = 3b (figure 3(a)) and for different values of c in the case of
a = 15b (figure 3(b)). As follows from figure 3(a), the character of the curves f l

c (h) (solid
curves) is close to that of curves W l(d) shown in figure 2. That is, f l

c monotonically decreases
with rising h at low a/c (see curve 1 with a = c in figure 3(a)), and has a maximum in
the case of the intermediate values of a/c (see curves 2, 3 and 4 with a/c = 3, 8 and 15,
respectively, in figure 3(a)). The maximum disappears in the limit of a → ∞ (see curve 5 in
figure 3(a)) corresponding to the transformation of a nanowire into a plate-like inclusion and
the conversion of a dislocation loop into a dislocation dipole. The critical misfit parameter f sl

c
for the energetically favourable formation of dislocation semi-loops is either lower than f l

c at
low h (see curves 1 and 1′ in figure 3(b)) or larger than f l

c at any h � b (see curves 3 and 3′ in
figure 3(b)).

When the interspacing h between the nanowire and the matrix free surface increases,
either the defect-free state or the formation of misfit dislocation loops becomes energetically
favourable. The interspacing h may increase during the growth of the composite, say, by
deposition of new atomic layers on its free surface. In doing so, in particular, the following
consequent transformation of the interphase boundary state can occur with rising h: the state
with a dislocation semi-loop (figure 1(b)) transforms into the defect-free state which then
transforms into the state with a misfit dislocation loop (figure 1(a)). For an illustration of this
transformation, dependences f l

c (h) and f sl
c (h) are presented in figure 3(c), which correspond

to curves 3 and 3′ in figure 3(a), respectively. These curves separate the regions α where the
formation of dislocation loops is energetically favourable, the regions β where the formation of
dislocation semi-loops is energetically favourable, the regions γ where the formation of both
dislocation loops and semi-loops is preferred compared to the defect-free state, and the regions
δ where the defect-free state is energetically favourable. In the case presented in figure 3(c),
both dislocation loops and semi-loops are unfavourable at low values of the misfit parameter f
(say, f = 0.02) and any values of h. At intermediate values of f (say, f = 0.028) dislocation
semi-loops are preferred in the range of low h. However, they become unfavourable with
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Figure 3. Dependences of critical misfit parameters f l
c (solid curves) and f sl

c (dashed curves) on
the dimensionless interspacing h/b between the nanowire and the matrix free surface, for ν = 0.3,
r0 = b, and (a) c/b = 3, while a/b = 3 (curve 1), 9 (curves 2 and 2′), 24 (curves 3 and 3′), 45
(curves 4 and 4′), and ∞ (curves 5 and 5′); (b) a/b = 15, while c/b = 3 (curves 1 and 1′), 10
(curves 2 and 2′), 30 (curves 3 and 3′); (c) c/b = 3 and a/b = 24. Curve 1′ is not shown in
(a), because it corresponds to the range of very large values of the misfit parameter ( f > 0.1).
Horizontal lines in figure 3(c) show values of the misfit parameter f . Greek letters α, β, γ and δ

denote the parameter regions where different (defected and non-defected) states of the system are
energetically favourable: α—loops, β—semi-loops, γ —both loops and semi-loops, and δ—non-
defected state.
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Figure 4. Critical misfit parameter fc as a function of the dimensionless (a) semi-width a/b, and
(b), (c) semi-height c/b of a nanowire, for r0 = b, ν = 0.3 and the following values of parameters:
(a) h = b, c = 3b (curve 1), h = b, c = 10b (curve 2), h = 10b, c = 3b (curve 3), and h = 10b,
c = 10b (curve 4); (b) h = 10b, while a/b = 3, 10, 30, and ∞ (curves 1, 2, 3, and 4, respectively);
(c) h = b, while a/b = 3, 10, 30 and ∞ (curves 1, 2, 3 and 4, respectively).
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rising h. At large values of f (say, f = 0.035) the energetically preferred state changes
with rising h as follows: dislocation semi-loops (phase region β) → the defect-free state
(phase region δ) → dislocation loops (phase region α). When horizontal line corresponding
to the misfit parameter f is located above the point where curves f l

c and f sl
c intersect (say,

at f = 0.04), both dislocation loops and semi-loops are preferred at low h, and the latter
transform into dislocation loops with rising h.

In figure 4, the dependences of the critical misfit parameter fc = min{ f l
c , f sl

c } (which
characterizes the energetically favourable formation of either dislocation loops or semi-loops)
on nanowire sizes a and c are shown. As follows from figure 4(a), fc monotonically decreases
with increasing the nanowire semi-width a. When the nanowire is highly distant from the
matrix free surface, fc decreases with increasing c (figure 4(b)), similar to the critical misfit
parameter for the formation of misfit dislocation dipoles in capped films [66, 67], which is
equal to fc in the limit of a → ∞. However, when the nanowire is closely distant from
the matrix free surface, the dependence fc(c) has a more complicated character (figure 4(c)).
So, fc decreases with increasing c at low values of a (see curve 1 in figure 4(c)). The curve
fc(c) has a maximum fc = f m

c at intermediate values of a (see curve 2 in figure 4(c)). In
the situation discussed, if f > fc, the formation of either dislocation loops or semi-loops
(which occurs as an energetically favourable process at f > fc) is realized at any value of
the nanowire semi-height c. For large values of a, the dependence fc(c) has two extrema,
maximum and minimum (see curve 3 in figure 4(c)). In the limit of a → ∞, fc monotonically
decreases with increasing c (see curve 4 in figure 4(c)). As follows from figure 4(a) and (b), in
the case where the nanowire is highly distant from the matrix free surface, misfit dislocation
loops and semi-loops are formed in the composite with a given value of f if the nanowire sizes
a and c exceed their critical values. In particular, misfit dislocation loops or semi-loops are
energetically favourable in the composite with a given value of c if f > fc(a → ∞) and a
exceeds some critical value (figure 4(a)). If f < fc(a → ∞), misfit dislocation configurations
are unfavourable at any value of a. Also, misfit dislocation configurations in the composite
with a given value of a are favourable at large c, if f > fc(c → ∞), and always unfavourable,
if f < fc(c → ∞) (see figure 4(c)).

When the interspacing h between the nanowire and the matrix free surface is small, in
some cases misfit dislocation loops or semi-loops are formed if the nanowire has a large enough
thickness (curves 1 and 4 in figure 4(c)), while in other cases they are generated only if the
nanowire thickness is not too large (see curve 3 in figure 4(c)).

In figure 5, the lines of constant levels of the critical misfit fc in the coordinate space
(a/b, c/b) are presented for different values of h. The maps illustrate that if the distance h
is very small, the dependences fc on c have maximums (figure 5(a)), which are absent if h
is sufficiently large (figures 5(b), (c)). From figure 5 it also follows that if the nanowire is
far enough from the free surface, for small a and large c, fc depends primarily on a and very
weakly depends on c, while for small c and large a, fc depends primarily on c. That means
that in this case, the value of fc is governed by the size of its smallest side.

7. Misfit dislocation dipoles in composites with nanowires

In general, together with misfit dislocation loops (figure 1(a)) and semi-loops (figure 1(b)),
dipoles of misfit dislocations formed at the interphase boundary between the nanowire and the
matrix (figure 1(c)) are capable of effectively contributing to relaxation of misfit stresses.
As with dislocation loops and semi-loops, the formation of misfit dislocation dipoles is
energetically favourable if the misfit parameter f exceeds the corresponding critical value
f dip
c . This critical misfit parameter f dip

c for dislocation dipole formation is calculated in
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Figure 5. The maps of the critical misfit fc in the coordinate space (a/b, c/b) for ν = 0.3, r0 = b;
h/b = 1 (a), 5 (b) and 25 (c).

the same way as the critical misfit parameter f l
c for dislocation loop formation (see above).

In doing so, we have calculated the dependences of f dip
c on h (see figure 6), for values of

parameters used in calculation of curves f l
c (h) and f sl

c (h) presented in figure 3(a). As follows
from figure 6, f dip

c decreases with increasing the nanowire semi-width a. At low a, the critical
misfit parameter f dip

c increases with increasing h (see curve 1 in figure 6). At intermediate
values of a the function f dip

c (h) has a minimum (curve 2 in figure 6). With further increase of
a, the function f dip

c (h) firstly increases and then decreases (see curves 3 and 4 in figure 6). In
the limit of a → ∞, f dip

c (h) monotonically increases with increasing h.
The dependences of f dip

c on the nanowire semi-height c and the maps of f dip
c in the

coordinate space (a/b, c/b) are shown in figures 7(a) and (b), for values of parameters used
in the calculation of the curves presented in figures 4(c) and 5(a), respectively. As follows
from figure 7, f dip

c decreases with increasing one of the nanowire sizes, a or c, even in the
situation where the nanowire is close to the matrix free surface (h is small). That is, in contrast
to the case of dislocation loops and semi-loops (see above), the effect of the free surface on the
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Figure 6. Dependences of the critical misfit parameter f dip
c on the dimensionless interspacing h/b

between the nanowire and the matrix free surface, for ν = 0.3, r0 = b, c/b = 3; a/b = 3, 9, 24,
45 and ∞ (curves 1, 2, 3, 4 and 5, respectively).

critical misfit parameter f dip
c is not essential. Analysis shows that the critical misfit parameter

f dip
c decreases with increasing a and/or c at any interspacing h between the nanowire and the

composite free surface.
Comparison between figures 3(a) and 6, and between figures 4(c) and 7(a) shows that

the critical misfit parameter f dip
c for the formation of dislocation dipoles is lower than the

critical misfit parameters f l
c and f sl

c that characterize the energetically favourable formation
of dislocation loops and semi-loops, respectively. It should be noted, however, that misfit
dislocation dipoles can result from transformations of dislocation semi-loops previously
formed in a composite. In these circumstances, real values of the critical misfit parameter
f dip
c can exceed those calculated here.

Together with misfit defect configurations (dislocation loops, semi-loops and dipoles)
considered in this paper, generally speaking, other defect configurations that cause relaxation
of misfit stresses are capable of being formed. In particular, such configurations are dipoles of
dislocations located at the nanowire facets x2 = ±a. Analysis of their formation is the subject
of further investigation.

8. Concluding remarks

Here we have suggested a theoretical model which describes the formation of misfit dislocation
configurations (loops, semi-loops, dipoles) in composite solids containing nanowires with
rectangular sections (figure 1). In the framework of the model, we have theoretically
examined the influence of geometric parameters on the formation of these misfit dislocation
configurations. The results of our quantitative examinations are in short as follows:

(i) The set of geometric parameters crucially affecting the generation of various misfit
dislocation configurations in composites with nanowires contains the misfit parameter f ,
the nanowire sizes a and c, and the interspacing h between a nanowire and the composite
free surface.

(ii) As with the commonly studied situation with plate-like film/substrate composites, the
generation of misfit dislocation configurations is energetically favourable in composites
with nanowires when their geometric parameters are in certain ranges (calculated above;
see figures 2–7).
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Figure 7. (a) Dependences of the critical misfit parameter f dip
c on the non-dimensional semi-

height c/b of the nanowire, for ν = 0.3, r0 = h = b; a/b = 3, 10, 30 and ∞ (curves 1, 2, 3
and 4, respectively). (b) The maps of the critical misfit f dip

c in the coordinate space (a/b, c/b) for
ν = 0.3, r0 = h = b.

(iii) Different misfit dislocation configurations (loops, semi-loops and dipoles (figure 1)) are
energetically preferred in different ranges of geometric parameters, in which case their
transformations can occur due to changes in these parameters, say, during deposition of
new atomic layers onto the composite free surface.

These results are important for technological applications of nanowires. In most cases the
formation of misfit dislocations as recombination centres leads to a dramatic degradation of
the functional properties of semiconductor nanowires. Therefore, it is commonly desirable to
fabricate nanowires in composites having geometric parameters in ranges corresponding to the
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non-defected state. However, the fabrication of a nanowire with misfit defect configurations
periodically arranged along the nanowire long axis can serve as a method for synthesis of
semiconductor nanowires containing quantum dots, which is an effective alternative to the
existing methods [8–10]. Actually, stress field distribution along such a nanowire is capable
of causing tentatively periodic modulation of its chemical composition along the nanowire
(because atoms of different chemical elements exhibit different behaviours in response to
stress fields). It is exactly the case of nanowires with compositionally distinguished quantum
dots.
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